Immersive Authoring of Tangible Augmented Reality Applications

Gun A. Lee\textalpha
Gerard J. Kim\textalpha

Claudia Nelles\textbeta
Mark Billinghurst\textbeta

\textalpha Virtual Reality & Perceptive Media Laboratory, POSTECH
\textbeta Human Interface Technology Laboratory New Zealand
Contents

- Introduction
- Application Domain Analysis
- Immersive Authoring Design
- Implementation
- Development Cases & User Study
- Conclusion
Introduction

- Tangible Augmented Reality [Kato 2001]
 - Each virtual object registered to physical object
 - Users manipulate virtual objects by manipulating corresponding physical objects
Introduction

- Tangible AR Applications

▲ MagicBook

▲ ARGroove

► Tiles

▼ VOMAR
Introduction

- Multimedia Software Development
 - Low level programming tools
 - Higher level authoring tools
 - Scripting languages
 - Visual languages
 - WYSIWYG & direct manipulation
- AR Application Development
 - Low level programming tools
Introduction

- Authoring tools for AR applications?
 - Desktop authoring tools?

- What about authoring an AR application within an AR environment?
 - “Immersive Authoring”
Application Domain Analysis

- data flow
- interaction

virtual object

logics

physical object

user
Application Domain Analysis

- **Components**
 - Virtual Object Components
 - Users virtually interact with
 - Physical Object Components
 - Users physically interact with
 - Logic Box Components
 - Connects virtual and physical objects

- **Properties**
 - Name
 - Data type (boolean, scalar, vector, matrix)
 - Attribute (readable/writable)

- **Links**
 - source property value -> target property value
Application Domain Analysis

<table>
<thead>
<tr>
<th>component type</th>
<th>property name</th>
<th>data type</th>
<th>attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical object</td>
<td>visible</td>
<td>boolean</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>transformation</td>
<td>matrix</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>position</td>
<td>vector</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>orientation</td>
<td>vector</td>
<td>r</td>
</tr>
<tr>
<td>virtual object</td>
<td>visible</td>
<td>boolean</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>base transformation</td>
<td>matrix</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>transformation</td>
<td>matrix</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>position</td>
<td>vector</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>orientation</td>
<td>vector</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>scale</td>
<td>scalar</td>
<td>r/w</td>
</tr>
<tr>
<td></td>
<td>play sound (optional)</td>
<td>boolean</td>
<td>r/w</td>
</tr>
</tbody>
</table>
Task Analysis

- Manipulating components

<table>
<thead>
<tr>
<th>Main task</th>
<th>Subtasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>Select component type to create</td>
</tr>
<tr>
<td>Destroy</td>
<td>Select a component to destroy</td>
</tr>
<tr>
<td>Modify</td>
<td>Select a component to modify</td>
</tr>
<tr>
<td></td>
<td>Browse & select a property</td>
</tr>
<tr>
<td></td>
<td>Change the value of the property</td>
</tr>
<tr>
<td>Connect (or Link)</td>
<td>Select components to connect</td>
</tr>
<tr>
<td></td>
<td>Browse & select properties</td>
</tr>
<tr>
<td></td>
<td>Connect/disconnect the properties</td>
</tr>
</tbody>
</table>
Immersive Authoring Design

- Design Guidelines
 - Fast evaluation of visual/aural/tactile features of the Tangible AR application being constructed
 - Direct 3D Manipulation
 - Efficient, natural and easy control
 - Application Model Transparency
 - Detailed control of underlying application model
 - Consistency
 - Consistent interaction methods with the target application domain
Immersive Authoring Design

- Authoring Environment
 - WYFIWYG
 - The authoring tool shows the Tangible AR application being built in default
 - Avoided new environmental setups for the authoring task
 - Used simple props as authoring tools, widely used in Tangible AR applications
 - From the guideline of ‘consistency’
Immersive Authoring Design

- Props for basic manipulation

▲ virtual object browser ▲ manipulator ▲ disposer
Immersive Authoring Design

- Creating a virtual object component
Immersive Authoring Design

- Placing a virtual object component
 - Translating, rotating and changing the physical object where the virtual object is anchored on
 - Direct 3D manipulations
Immersive Authoring Design

- Destroying a virtual object component
Immersive Authoring Design

- Props for detailed control

- Inspector pad

- Keypad
Immersive Authoring Design

- Browsing component properties
Immersive Authoring Design

- Changing property values
Immersive Authoring Design

- Connecting component properties
Implementation

- **PC Platform**
 - Pentium4 3.2GHz with 1GB main memory
 - GeForce4 Ti4600
 - Logitech USB Webcam (320x240 / 30fps)
 - i-Visor Head Mounted Display (800x600)
 - Windows XP
 - ARToolKit 2.65DS
 - OpenGL with custom 3D model loader
 - FMOD 3D sound library
Development Cases

- **Windmill**
 - 3 virtual objects
 - Ground, tower, and vane
 - 1 physical object
 - The basement
 - 1 logic box
 - Motor rotation
 - Took less than 3 minutes to place components, connect them and validate the result
Development Cases

- Pair matching
 - 4 virtual objects
 - 2 physical objects
 - 1 logic box
 - 2 input positions
 - 2 boolean outputs indicating near/far
- Changing visibilities of virtual objects according to the distance between markers
- Took about 5 minutes for building and testing
Development Cases

- The Hare and Tortoise
 - An interactive story
 - 13 Virtual Object Models
 - 3 Physical Objects (book pages with markers)
 - Interactive feature
 - Choosing whether the hare should sleep or not
 - Using the ‘Occlusion-based interaction method’
 - ‘Maker pressed’ properties in physical objects
 - Connect OBI properties to virtual object visibilities
 - Took about 15 minutes to construct the scenes and to implement interactivity
Development Cases

- The Hare and Tortoise
Development Cases

Demo Video
User Study

- Pilot User study
 - AR Workshop
 - 24 subjects (16M/8F)
 - Age: 9-50
 - IA vs Desktop tool
 - Task: placing objects
- Observation
 - Task completion time
 - Error count
 - Users’ Preference

▲ CATOMIR authoring tool
User Study

Results

- Task completion time
 - IA: $\mu=3.53$, $\sigma=2.24$
 - Desktop: $\mu=5.05$, $\sigma=2.97$
 - IA turned out 25% faster
 - $t(23)=2.84$, $p=0.00094$

- Error counts
 - IA: 21 (fatal:0)
 - Desktop: 36 (fatal:21)

- Users’ Preference
 - IA: 42% (10)
 - Mixed: 33% (8)
 - Desktop: 25% (6)
Conclusion

- ‘Immersive Authoring’ method
 - Reducing gaps between development and testing environments (WYFIWYG)
 - Easy to learn and use
 - Efficient, rapid prototyping
Conclusion

■ Future research direction
 ■ Improve the application model
 ■ Try other behavior models
 – Event-driven model, rule based model, etc.
 ■ Logic box library expected
 – Support more complex behaviors and interaction methods
 – Support custom built logic boxes
 ■ Try other interaction methods
 ■ Gestures, motions captures, keyboards, etc.
 ■ More user studies
Thank you!