Modeling Virtual Object Behavior within Virtual Environment

Gun A. Lee Gerard J. Kim Chan-Mo Park
{endovert, gkim, parkcm}@postech.ac.kr

Virtual Reality and Interactive Media Laboratory, POSTECH
http://vr.postech.ac.kr
Contents

- Introduction
- Problem & Approaches
- The PiP System
 - Virtual World & Object Model
 - ACE Behavior Model
 - Interactions for Behavior Modeling
 - Implementation
- Modeling Results
- Conclusion & Future Works
Introduction

- Specification - Implementation - Evaluation

- Immersive VR Systems
 - Gap between implementation & evaluation environment

- VR Development Tools as Immersive VR Systems
Introduction

- Virtual World with Virtual Objects
 - Virtual Object
 - Form + Function + Behavior [Kim98]

- Constructing a Virtual World within Virtual Environment
Introduction

Related Works

- 3DM[Butterworth92], JDCAD[Liang94], CDS[Bowman95], ISAAC[Mine95]
Introduction

Related Works

- Lingua Graphica[Stiles92], Data Flow Representation[Steed96]
Introduction

Goal of this work

- Modeling Virtual Object “Behavior” within Virtual Environment
- Fully utilizing the merits of the “3D interaction”
Problem

- Immersive VR Systems
 - Provide high level of presence
 - Tracking device, HMD
 - Isolate subject from the real world
 - Hard to use conventional interfaces

- Modeling Virtual Object Behaviors
 - Mostly by text editing task
Approaches

- Virtual Terminal
- Metaphorical Objects
- Programming by Demonstration
Approaches

- Virtual Terminal
 - Text, 2D Graphics and others
 - Limits of device technology
 - Special alphanumeric I/O devices for VE
Approaches

- Metaphorical Objects
 - Visual Languages
 - Cube[Najork96], ToonTalk[Kahn96]
 - Data Flow Representation[Steed96]
Approaches

- Programming by Demonstration
 - “Direct manipulation for programming tasks” [Lieberman01]
 - Pavlov[Wolber97], KIDSIM[Smith94]
The PiP System

- Programming virtual object behavior in virtual reality Program

- Filling out the virtual object behavior model using 3D interactions
The PiP System

Implementation

- Hardware
 - PC platform
 - HMD
 - Fastrak
 - 5th Glove
 - 3-buttoned prop

- Software
 - Microsoft Windows OS
 - OpenGL
The PiP System

Virtual World Model

- The Universe
 - Variables
 - current time
 - Δtime
 - current world
 - Types
 - type1
 - type2
 - ...
 - Worlds
 - world1
 - object1
 - object2
 - ...
 - world2
 - ...

```xml
<universe>
  <world pond>
    <bgcolor>1.0 1.0 1.0</bgcolor>
  </world>
  <type fish>
    <appearances>
      <default>fish.obj</default>
    </appearances>
    <behavior>
      <action moveforward 1.0>
    </behavior>
  </type>
  <object fish1>
    type fish
    x 100
    y 100
    z 100
    world pond
  </object>
  <object>
    type fish
    x -50
    y 200
    z 100
    world pond
  </object>
</universe>
```
The PiP System

- Virtual Object Model
 - Form
 - Type, Position, Orientation, World, Appearance, Sound & User defined variables
 - Function
 - Change Variable(=, +, -, *, /, %), Create, Destroy, Move, Rotate, Scale, Play Sound
 - Behavior
The PiP System

ACE Behavior Model

- Event
 - Collision, Property Value Changed, Timer
- Context
 - Spatial
 - Non-spatial
- Action
The PiP System

Example behavior "eat food"

```xml
<behavior>
  <event collided food>

  <context>
    <roi back -10 -10 10 10 20 empty>
    <thisObject appearance != 1>
  </context>

  <action>
    <moveforward 1.0>
    <destroy eventedObject>
  </action>

</behavior>
```
The PiP System

- Interacting with Virtual Objects
 - Virtual Hand, 3D Widgets, Menu
 - Create, Destroy, Move, Rotate, Change Appearance and Play Sound
The PiP System

- Interactions for Behavior Modeling
 - Demonstrating Event, Contexts and Actions
Modeling Results

Virtual Undersea World

Romancing the Stone
Modeling Virtual Object Behavior within Virtual Environment

Virtual Reality Laboratory
POSTECH
Conclusion & Future Works

- Categorized approaches for modeling VO behavior within VE
- The PiP System
- Usability tests with other approaches and interfaces
- Virtual Object Models and 3D Interaction Methods
Thank you!

Virtual Reality and Interactive Media Laboratory, POSTECH
http://vr.postech.ac.kr
References

Please refer to the paper.